Application & Enrichment Solutions

Application & Enrichment 1G

Across
1. Drama
2. Altogether
3. Real
4. Estimation
5. Invent
6. Build
7. Key
8. Story
9. Math
10. Drawing

Down
1. done
2. $6 - 4 = 2$ pies
3. $25 + 42 = 67$
4. Key words: "[fraction] of the cookies" indicates multiplying a fraction by a number (12 cookies). "Altogether" indicates addition.
 \[
 \frac{1}{3} \times 12 = 4 \text{ cookies}
 \]
 \[
 \frac{1}{4} \times 12 = 3 \text{ cookies}
 \]
 \[
 4 + 3 = 7 \text{ cookies}
 \]
5. Key words: "were left" indicates subtraction; "one-half of them" indicates multiplying a fraction ($1/2$) by a number (the four remaining trees).
 \[
 7 - 3 = 4 \text{ trees}
 \]
 \[
 \frac{1}{2} \times 4 = 2 \text{ apple trees}
 \]
6. Key words: "total" indicates addition; "3/4 of the total" indicates multiplying a fraction by a number; "have left" indicates subtraction.
 \[
 $20 + 16 = 36$
 \]
 \[
 \frac{3}{4} \times 36 = 27$
 \]
 \[
 36 - 27 = 9$

Application & Enrichment 2G

1. Colored parts should match the numerator of each fraction.

2.

3.

4.

5.

6.

7. 4 eggs are broken
6 eggs are left
8. 2 boxes will be donated
 6 boxes will be left
9. 8 pieces of pie were eaten
 4 pieces were left

Application & Enrichment 3G
1. two times
 \[2 \times (6 + 4) = 2 \times 10 = 20 \]
2. eight times
 \[8 \times (5 + 2) = 8 \times 7 = 56 \]
3. three times
 \[3 \times (9 - 4) = 3 \times 5 = 15 \]
4. ten times
 \[10 \times (1,268 - 345) = 10 \times 923 = 9,230 \]
5. \[\frac{1}{6} + \frac{3}{6} = \frac{4}{6} \] of the seashells
 \[\frac{4}{6} \] of 12
 \[12 \div 6 = 2 \]
 \[2 \times 4 = 8 \] seashells
6. \[\frac{1}{4} + \frac{1}{4} = \frac{2}{4} \] of the prizes
 \[\frac{2}{4} \] of 8
 \[8 \div 4 = 2 \]
 \[2 \times 2 = 4 \] prizes
7. \[\frac{2}{5} + \frac{3}{5} = \frac{5}{5} \] of his problems
 \[\frac{5}{5} \] of 20
 \[20 \div 5 = 4 \]
 \[4 \times 5 = 20 \] problems
 Steve has solved all his problems

Application & Enrichment 4G
1.
 \[
 \begin{array}{|c|c|}
 \hline
 \text{ } & \text{ } \\
 \hline
 \end{array}
 \]
2. No, there is still the same amount of cake in the pan.
 \[\frac{2}{4} \]
3. Ian’s share is \(\frac{1}{4} \) of the whole cake
 Jamie’s share is \(\frac{1}{4} \) of the whole cake
4.
 \[
 \begin{array}{|c|c|}
 \hline
 \text{ } & \text{ } \\
 \hline
 \text{ } & \text{ } \\
 \hline
 \end{array}
 \]
5.
 \[
 \begin{array}{|c|c|}
 \hline
 \text{ } & \text{ } \\
 \hline
 \text{ } & \text{ } \\
 \hline
 \end{array}
 \]
 12/16 of the cake is in the pan
6. 12/16 cut into 4 parts = 3/16
7.
 \[
 \begin{array}{|c|}
 \hline
 \text{ } \\
 \hline
 \end{array}
 \]
8.
 \[
 \begin{array}{|c|c|}
 \hline
 \text{ } & \text{ } \\
 \hline
 \text{ } & \text{ } \\
 \hline
 \end{array}
 \]
 2/4 of the pie is left to be eaten
9. Each of the boys will eat \(\frac{1}{4} \) of the whole pie.
 Each of the boys will eat \(\frac{1}{2} \) of the left-over pie.
10. \[\frac{4}{5} = \frac{2}{5} + \frac{2}{5} \]
 \[\frac{4}{5} = \frac{1}{5} + \frac{3}{5} \]
 \[\frac{4}{5} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} \]
 Since this is addition, the order of the fractions is not important.
11. \(\frac{3}{6} = \frac{1}{6} + \frac{2}{6} \)
 \(\frac{3}{6} = 1/6 + 1/6 + 1/6 \)

12. \(\frac{7}{8} = \frac{1}{8} + \frac{6}{8} \)
 \(\frac{7}{8} = 2/8 + 5/8 \)
 \(\frac{7}{8} = \frac{3}{8} + \frac{4}{8} \)
 \(\frac{7}{8} = 2/8 + 2/8 + 2/8 + 1/8 \)
 \(\frac{7}{8} = 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 \)

There are other options as well.

Application & Enrichment 5G

1. Key words: another, in all
 Add

2. Key words: is left
 Subtract

3. Key words: difference
 Subtract

4. Key words: none
 Add

5. Key words: is left
 Subtract

6.
 ![Diagram of one mile]

 \(\frac{1}{4} + \frac{1}{4} = \frac{2}{4} \) of a mile

7.
 ![Diagram of garden]

 \(1 - \frac{1}{3} = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \) of the garden still needs to be planted

8.
 ![Diagram of jellybeans]

 \(\frac{3}{4} - \frac{1}{2} = \)
 \(\frac{6}{8} - \frac{4}{8} = \frac{2}{8} \) or \(\frac{1}{4} \) lb

9.
 ![Diagram of fractions]

 \(\frac{1}{3} + \frac{1}{6} = \frac{6}{18} + \frac{3}{18} = \frac{9}{18} \) or \(\frac{1}{2} \) of the jellybeans

10. 1/2 of 12
 \(12 \div 2 = 6 \)
 \(1 \times 6 = 6 \) jellybeans

 Counting the shaded or colored jellybeans in the drawing yields the same answer.

Application & Enrichment 6G

1.
 ![Diagram of fractions]

 \(\frac{2}{4} = \frac{1}{2} \)
3.

\[
\begin{array}{c}
\text{1/4} = 2/8 \\
4. \text{ done} \\
5. \text{ done} \\
6. 3 \times (2) = 6 \\
7. \text{Answers will vary} \\
8. 5 \times (6) = 30 \\
9. \text{Answers will vary} \\
10. (3) \times (6) = 18 \\
11. \text{Answers will vary}
\end{array}
\]

Application and Enrichment 7G

Answer should be "READ FOR MEANING"

1. Addition
2. Addition
3. Subtraction
4. Addition
5. Subtraction
6. Subtraction
7. Addition
8. Subtraction
9. Addition
10. Addition

Application & Enrichment 8G

Note: Depending on the method the student uses to add the fractions, the final answer may differ. As long as the numerator and denominator are the same in the final answer (e.g., 4/4, 8/8, 64/64), the answer is correct.

1. \[1/4 + 1/4 + 1/8 + 1/8 + 1/4 =
\]
\[1/8 + 1/8 + 1/4 + 1/4 + 1/4 =
\]
\[2/8 + 3/4 =
\]
\[8/32 + 24/32 =
\]
\[32/32 = 1
\]
2. \[1/4 + 1/8 + 1/8 + 1/2 =
\]
\[1/8 + 1/8 + 1/4 + 1/2 =
\]
\[2/8 + 1/4 + 1/2 =
\]
\[8/32 + 8/32 + 1/2 =
\]
\[16/32 + 1/2 =
\]
\[32/64 + 32/64 =
\]
\[64/64 = 1
\]
3. \[1/4 + 1/2 + 1/8 + 1/8 =
\]
\[1/8 + 1/8 + 1/4 + 1/2 =
\]
\[2/8 + 1/4 + 1/2 =
\]
\[2/8 + 2/8 + 4/8 =
\]
\[8/8 = 1
\]

Note that after rearranging the fractions, problem 3 was the same as problem 2. We used a different method to solve in problem 3. Since both methods produced answers equivalent to 1, both methods are correct and may be used with either problem.

Application & Enrichment 9G

1. What the recipe calls for:

\[
\begin{array}{c}
\text{What Mary needs:}
\end{array}
\]
\[1/3 \times 1/3 = 1/9 \text{ of a cup}
\]
2. \[2 \times 1/3 = 2/3 \text{ of a cup}
\]
3. Juncoes divided into 4 groups of 3 each. 3 groups = 9 juncoes.
\[3/4 \times 12 = 9 \text{ juncoes}
\]
4. \(\frac{3}{1} \times \frac{1}{4} = \frac{3}{4} \) of a pizza

\[\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{pizza.png}}
\end{array} \]

Application & Enrichment 10G

1. done
2. done
3. \(\frac{1}{7} \) of what was left over
 \(\frac{1}{7} \times \frac{7}{8} = \frac{7}{56} \) of a whole pie
4. \(\frac{1}{2} \) of the days last month
 \(\frac{1}{2} \times 30 = 15 \) days
5. \(\frac{2}{3} \) of what Paul did
 \(\frac{2}{3} \times \frac{1}{5} = \frac{2}{15} \) of the job
6. \(6 \times \frac{1}{2} = 3 \) miles

Application & Enrichment 11G

1. \(\frac{3}{1} \div \frac{1}{6} = 18 \div 1 = 18 \) times. (Dividing a whole number by a unit fraction is the same as multiplying the whole number by the denominator of the fraction.)
2. \(\frac{3}{4} \times \frac{1}{2} = \frac{3}{8} \) of a pizza
3. \(\frac{1}{2} + \frac{1}{4} = \frac{4}{8} + \frac{2}{8} = \frac{6}{8} \) of the cookies
4. \(\frac{1}{3} \div \frac{4}{} = \frac{1}{3} \div \frac{12}{3} = \frac{1}{12} \) of a pie
5. \(\frac{1}{2} \div \frac{1}{4} = \frac{2}{4} \div \frac{1}{4} = 2 \) people

Application & Enrichment 12G

1. Definitely false \(\frac{3}{7} < \frac{1}{2} \)
 \(\frac{1}{2} + \frac{2}{5} = \frac{5}{10} + \frac{4}{10} = \frac{9}{10} \)
2. Definitely false \(\frac{2}{5} < \frac{1}{2} \)
 \(\frac{1}{4} + \frac{1}{2} = \frac{2}{8} + \frac{4}{8} = \frac{6}{8} \) or \(\frac{3}{4} \)
3. Definitely false \(\frac{9}{10} > \frac{2}{5} \)
 \(\frac{2}{5} - \frac{1}{4} = \frac{8}{20} - \frac{5}{20} = \frac{3}{20} \)
4. Could be true \(\frac{5}{12} < \frac{2}{3} \)
 \(\frac{2}{3} - \frac{1}{4} = \frac{8}{12} - \frac{3}{12} = \frac{5}{12} \)
5. \(\frac{1}{3} + \frac{1}{5} = \frac{5}{15} + \frac{3}{15} = \frac{8}{15} \)
 Makes sense; \(\frac{8}{15} \) is larger than both numbers she started with.
6. \(\frac{3}{4} - \frac{1}{2} = \frac{6}{8} - \frac{4}{8} = \frac{2}{8} = \frac{1}{4} \)
 Makes sense; \(\frac{1}{4} \) is shorter than the distance he started with.
7. \(\frac{1}{2} \times \frac{2}{3} = \frac{2}{6} \)
 Drawing C
8. \(\frac{1}{3} + \frac{1}{2} = \frac{2}{6} + \frac{3}{6} = \frac{5}{6} \)
 Drawing D
9. \(\frac{1}{3} \div \frac{1}{2} = \frac{2}{6} \div \frac{3}{6} = \frac{2}{3} \)
 Drawing A
10. \(\frac{1}{2} - \frac{1}{3} = \frac{3}{6} - \frac{2}{6} = \frac{1}{6} \)
 Drawing B

Application & Enrichment 13G

1. \(66: 2 \times 3 \times 11 \)
 \(84: 2 \times 2 \times 3 \times 7 \)
 GCF = \(2 \times 3 = 6 \)
 \(66 \div 6 = 11; \) 6 is a factor of 66
 \(84 \div 6 = 14; \) 6 is a factor of 84
2. \(62: 2 \times 31 \)
 \(93: 3 \times 31 \)
 GCF = \(31 \) (31 is the only prime common to both.)
 \(62 \div 31 = 2; \) 31 is a factor of 62
 \(93 \div 31 = 3; \) 31 is a factor of 93
3. \(40 = 2 \times 2 \times 2 \times 5 \)
 \(90 = 2 \times 3 \times 3 \times 5 \)
 GCF = \(2 \times 5 = 10 \)
 \(40 \div 10 = 4; \) 10 is a factor of 40
 \(90 \div 10 = 9; \) 10 is a factor of 90
4. GCF = \(5 \)
 \(5(3 + 2) = 5(5) = 25 \)
 \(5(3) + 5(2) = 15 + 10 = 25 \)
5. GCF = \(6 \)
 \(6(3 + 4) = 6(7) = 42 \)
 \(6(3) + 6(4) = 18 + 24 = 42 \)
6. GCF = \(8 \)
 \(8(4 + 7) = 8(11) = 88 \)
 \(8(4) + 8(7) = 32 + 56 = 88 \)
7. GCF = 9
 \(9(5 + 9) = 9(14) = 126\)
 \(9(5) + 9(9) = 45 + 81 = 126\)

8. GCF = 3
 \(3(2 + 13) = 3(15) = 45\)
 \(3(2) + 3(13) = 6 + 39 = 45\)

Application & Enrichment 14G
1. \(2 \times 3 = 6 \text{ sq in}\)
2. \(3 \times 2 = 6; 3 \times 6 = 18 \text{ sq in}\)
3. \(18 \div 6 = 3\)
4. five
5. ten
6. \(24 \times 10 = 240 \text{ sq in}\)
7. \(1/2 \times 24 = 12; 1/2 \times 240 = 120 \text{ sq in}\)
8. \(120 + 240 = 120/240 = 1/2\)
9. one-sixth
10. one-fourth

Application & Enrichment 15G
1. \([(8) + 1] \times 5 =
 [9] \times 5 = 45\)
2. \([(10) \times 9] + 2 =
 [90] + 2 = 92\)
3. \(2 \times [(7) - 5] =
 2 \times [2] = 4\)
4. \(7 + 4[9 - (6)] =
 7 + 4[3] =
 7 + 12 = 19\)
5. \([(24 \div 4) + 2] \times 6 =
 [(6) + 2] \times 6 =
 [8] \times 6 = 48\)
6. \([(15 - 8) \times 2] + 5 =
 [(7) \times 2] + 5 =
 [14] + 5 = 19\)
7. \([(3 + 3) \times 5] \div 10 =
 [(6) \times 5] \div 10 =
 [30] \div 10 = 3\)
8. \(2/10 = 20/100\)
 \(20/100 + 70/100 = 90/100\)
9. \(4/10 = 40/100\)
 \(40/100 - 1/100 = 39/100\)

Application & Enrichment 16G
1. Quadrilateral, trapezoid
2. Quadrilateral, parallelogram, rhombus
3. Quadrilateral, parallelogram, rectangle
4. Quadrilateral, parallelogram, rectangle, rhombus, square
5. 4
6. Rhombus, square, rectangle, parallelograms

Application & Enrichment 17G
1. \[1/3\]
 \[1/9\]
 Area = 1/9 sq yd

2. \[1/3\]
 \[1/6\]
 Area = 1/6 sq mi
3. Application & Enrichment 18G

1. Main part: $3 \times 4 \times 6 = 72 \text{ cu yd}$
 Tower: $1 \times 1 \times 3 = 3 \text{ cu yd}$
 Total: $72 + 3 = 75 \text{ cu yd}$

2. How the student arrives at the answer to this problem may vary. The floor plan must be divided into rectangular sections to compute the area, and there are multiple correct ways to do so. One example is shown. The final answer should always be the same.

 \[
 \begin{array}{c|c|c|c}
 \text{2 yards} & & & \\
 \hline
 1/2 & 1/2 & 1/2 & \\
 \hline
 1 & 1 & & \\
 \hline
 2 yards & & & 1 yard
 \end{array}
 \]

 Area = 1 sq yd

 \[
 \begin{array}{c|c|c|c}
 \text{1 yard} & & & \\
 \hline
 1/2 & & 1/2 & \\
 \hline
 & & & \\
 \hline
 1 & & 1 & \\
 \hline
 \end{array}
 \]

 \[
 \begin{array}{c|c|c|c}
 \text{2 yards} & & & \\
 \hline
 1/2 & & & \\
 \hline
 & & & \\
 \hline
 1 & & & \\
 \hline
 \end{array}
 \]

 Application & Enrichment 19G

1. 16 leaves
2. $5\frac{1}{2} - 1\frac{1}{2} = 4 \text{ in}$
 Counting yields the same answer.
3. $1\frac{1}{2} + 4\frac{1}{2} = 6 \text{ in}$
4. $10/2 \times 3/1 = 30/2 = 15 \text{ in}$
5. Graph should show one dot over the 1 mark, two dots over the 2 1/2 mark, and three dots over the 4 mark.
6. 4 occurred most; 1 occurred least
7. $4 + 4 + 4 = 12 \text{ cups}$
 $2\frac{1}{2} + 2\frac{1}{2} = 5 \text{ cups}$
 $12 + 5 + 1 = 18 \text{ cups}$
8. $18 \div 6 = 3 \text{ cups average}$

Application & Enrichment 20G

1. Counting yields the same answer.
2. Counting the squares yields the same answer.
3. Base \times Height = Volume
 $19 \times 5 = 95 \text{ cu yd}$
1. (2, 3)
2. (5, 7); 12 blocks
3. The new route will also be twelve blocks as long as Bill always walks in a direction that brings him closer to home. We are assuming that he stays on the sidewalks and does not cut across any blocks diagonally.
4. 2, 4, 6, 8
5. 0, 4, 8, 12, 16
6. (0, 0), (2, 4), (4, 8), (6, 12), (8, 16)

Application & Enrichment 22G

1. \(((36 ÷ 6) + 3) - 1\) × 2 =
 \(([6 + 3] - 1) \times 2 =
 \{9 - 1\} \times 2 =
 8 \times 2 = 16
2. \(((17 - 9) \times 3) - 2\) ÷ 11 =
 \{[8 \times 3] - 2\} ÷ 11 =
 \{24 - 2\} ÷ 11 =
 22 ÷ 11 = 2
3. \(2 \times ((8 + (4 \times 7)) ÷ 4) =
 2 \times ((8 + 28) ÷ 4) =
 2 \times \{36 ÷ 4\} =
 2 \times 9 = 18
4. 5 + \{[3(6 + 1)] - 4\} =
 5 + \{[3(7)] - 4\} =
 5 + \{21 - 4\} =
 5 + \{17\} = 22
5.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

The student may find and describe patterns other than those given.
6.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

Each number in the bottom row is four times the number above it.

7.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>7</th>
<th>11</th>
<th>16</th>
<th>22</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>21</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Add a number one greater each time, starting with 1 in the top row and 0 in the bottom.

8.
<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>21</td>
<td>18</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Top row skip counts by three. The bottom row subtracts three each time.

Application & Enrichment 23G

1. \(\frac{5}{6} ÷ \frac{1}{6} = 5 ÷ 1 = 5\)

2. \(\frac{1}{3} ÷ 4 = \frac{1}{3} × \frac{1}{4} = \frac{1}{12}\) of a pizza

3. \(3\frac{3}{4} ÷ 1\frac{1}{4} = \frac{25}{8} ÷ \frac{5}{4} = \frac{25}{8} ÷ 10/8 = 25 ÷ 10 = 2\frac{1}{2}\) ft

Adding the areas of the parts results in \(3\frac{3}{4}\) sq ft.

Application & Enrichment 24G

1. 4 qt
2. Multiply
3.

4. 6 cups ÷ 1/2 cups = \(6/1 × 2/1 = 12\) times

5. $18 × 3 = $54
6. 3 ft
7. Divide
8.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 1/2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/3</td>
<td></td>
</tr>
</tbody>
</table>

9. $1/3 = 8/24$
 $3/8 = 9/24$
 $9/24 > 8/24$, so $3/8 > 1/3$
 $3/8$ of a yard will be enough.

10. $2/3 = 16/24$
 $1/2 = 12/24$
 $3/8 = 9/24$
 $3/4 = 18/24$
 Only $18/24$ is greater than $16/24$, so Sarah needs to buy $3/4$ of a yard.

Application & Enrichment 25G

1. Counting: 15 sq ft
 Multiplying:
 $6 \times 2 1/2 = 6 \times 5/2 = 30/2 = 15$ sq ft

2. $1/2 \times 2 1/2 = 1/2 \times 5/2 = 5/4 = 1 1/4$ pizzas

3. Counting: $8 3/4$ sq mi
 Multiplying:
 $2 1/2 \times 3 1/2 = 5/2 \times 7/2 = 35/4 = 8 3/4$ sq mi

4.

 ![Diagram]

 Counting:
 $3 + 1/2 + 1/2 + 1/2 = 4 1/2$ cups

Application & Enrichment 26G

1. Drawing and counting: 14 pieces
 Dividing:
 $3 1/2 \div 1/4 = 7/2 \times 4/1 = 28/2 = 14$ pieces

2. $2 3/4 \div 1/8 = 11/4 \div 1/8 = 11/4 \times 8/1 = 88/4 = 22$ people

3.

 ![Diagram]

 $3 3/4$ sq ft $\div 1 1/2$ ft = $15/4 \div 3/2 = 15/4 \times 2/3 = 30/12 = 2 1/2$ ft
4. 4 times
 \[5 \div 1 \frac{1}{4} = \]
 \[5 \div \frac{5}{4} = \]
 \[5 \times \frac{4}{5} = \frac{20}{5} = 4 \text{ times} \]

5. Each gets 2 whole cookies. The remaining 1 1/2 cookies can be evenly split into 1/2 per person.
 \[7 \frac{1}{2} \div 3 = \]
 \[15/2 \times \frac{1}{3} = \frac{15}{6} = 2 \text{ 1/2 cookies} \]

6. \[6 \frac{2}{3} \div 1 \frac{1}{3} = \]
 \[20/3 \div 4/3 = \]
 \[20 \div 4 = 5 \text{ sections.} \]
 Since there is also a bench at the beginning of the trail, there will be 6 benches. The drawing helps make this clearer.

![Start End](0 1 2 3 4 5 6 7)

Application & Enrichment 27G

- 1. 5 squares
- 2. 10 triangles
- 3. Skip counting by ones and twos
- 4. 20 squares, 40 triangles
- 5.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

- 6. 15 flies missed
- 7. 9 flies caught

- 8.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

- 9. 12 saved cookies
- 10. 7 + 14 = 21 cookies taken out

11. 20 cookies eaten right away

Application & Enrichment 28G

- 1.

\[
\begin{array}{c}
4 \frac{1}{2} \\
\times 5 \frac{1}{3} \\
\hline
4 \frac{1}{2} \times 5 \frac{1}{3} = \]
\end{array}
\]

\[
\begin{array}{c}
\frac{1}{2} \\
\times \frac{1}{3} \\
\hline
\frac{1}{2} \times \frac{1}{3} = \]
\end{array}
\]

\[
\begin{array}{c}
\frac{4}{3} \\
\times \frac{1}{6} \\
\hline
\frac{4}{3} \times \frac{1}{6} = \]
\end{array}
\]

or

\[
\begin{array}{c}
\frac{9}{2} \\
\times \frac{16}{3} \\
\hline
\frac{9}{2} \times \frac{16}{3} = \]
\end{array}
\]

\[
\begin{array}{c}
20 \frac{5}{2} \\
\div 144 \\
\hline
20 \frac{5}{2} \div 144 = \]
\end{array}
\]

or

\[
\begin{array}{c}
20 \frac{5}{2} \\
\div \frac{144}{6} \\
\hline
20 \frac{5}{2} \div \frac{144}{6} = \]
\end{array}
\]

\[
\begin{array}{c}
20 \frac{24}{6} = 24 \\
\end{array}
\]

2.

\[
\begin{array}{c}
3 \frac{1}{7} \\
\times 2 \frac{1}{2} \\
\hline
3 \frac{1}{7} \times 2 \frac{1}{2} = \]
\end{array}
\]

or

\[
\begin{array}{c}
\frac{3}{2} \\
\times \frac{1}{14} \\
\hline
\frac{3}{2} \times \frac{1}{14} = \]
\end{array}
\]

\[
\begin{array}{c}
\frac{22}{7} \\
\times \frac{5}{2} \\
\hline
\frac{22}{7} \times \frac{5}{2} = \]
\end{array}
\]

\[
\begin{array}{c}
6 \frac{28}{14} \div 1 \frac{14}{14} \\
\hline
6 \frac{28}{14} \div 1 \frac{14}{14} = \]
\end{array}
\]

or

\[
\begin{array}{c}
6 \frac{28}{14} \\
\div \frac{110}{14} \\
\hline
6 \frac{28}{14} \div \frac{110}{14} = \]
\end{array}
\]

\[
\begin{array}{c}
7 \frac{12}{14} = \frac{7 \times 6}{7} \\
\end{array}
\]

or

\[
\begin{array}{c}
6 \frac{26}{14} \div \frac{7}{14} = \frac{7 \times 6}{7} \\
\end{array}
\]

Application & Enrichment 29G

- 1. 4.2 > 3.8
- 2. 0.90 = 0.9
- 3. 2.31 > 1.31
- 4. 0.57 < 0.75
- 5. 0.123 < 0.238
- 6. 0.8 > 0.12
- 7. 1.62 > 0.83